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A B S T R A C T

The Influenza A (H1N1) pdm09 virus caused a global pandemic in 2009 and has circulated seasonally ever since.
As the continual genetic evolution of hemagglutinin in this virus leads to antigenic drift, rapid identification of
antigenic variants and characterization of the antigenic evolution are needed. In this study, we developed
PREDAC-H1pdm, a model to predict antigenic relationships between H1N1pdm viruses and identify antigenic
clusters for post-2009 pandemic H1N1 strains. Our model performed well in predicting antigenic variants, which
was helpful in influenza surveillance. By mapping the antigenic clusters for H1N1pdm, we found that sub-
stitutions on the Sa epitope were common for H1N1pdm, whereas for the former seasonal H1N1, substitutions on
the Sb epitope were more common in antigenic evolution. Additionally, the localized epidemic pattern of
H1N1pdm was more obvious than that of the former seasonal H1N1, which could make vaccine recommendation
more sophisticated. Overall, the antigenic relationship prediction model we developed provides a rapid deter-
mination method for identifying antigenic variants, and the further analysis of evolutionary and epidemic
characteristics can facilitate vaccine recommendations and influenza surveillance for H1N1pdm.
1. Introduction

Influenza viruses are long-term threats to human society since they
cause excessive morbidity and mortality, leading to substantial massive
economic costs. Influenza virus A (H1N1) is one of the main subtypes
responsible for seasonal epidemics of disease; it was first detected in the
human population in 1918 (Frost, 1920) and has circulated ever since. It
disappeared in 1957 after the influenza A (H2N2) outbreak (Kilbourne,
2006), and re-emerged in 1977 (World Health Organization, 1978). In
2009, a novel swine-origin H1N1 influenza virus caused a global
pandemic, and soon after the preceding seasonal H1N1 viruses gradually
diminished (World Health Organization, 2010). To date, the novel H1N1
(H1N1pdm) virus has circulated as a seasonal virus, and experienced
gradual genetic and antigenic evolution.
ng).
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Due to the high mutation rate of hemagglutinin, which allows the
virus to escape from host immunity, the effectiveness of the influenza
virus vaccine decreases over time, thus there is a need to update vaccine
strain every season. Vaccine recommendations are mainly based on the
antigenic characteristics of circulating influenza viruses, as tested within
the WHO Global Influenza Surveillance and Response System (GISRS)
(Monto, 2018). Antigenic drift in circulating influenza viruses is pri-
marily analyzed using hemagglutinin inhibition (HI) assays on infected
ferret serum (Sandbulte et al., 2011), which is the gold standard for
influenza vaccine selection. Liu et al. pointed out that HI titers of antisera
from infected ferrets were significantly affected by antigenic site Sa,
while in adult humans, antigenic sites Sb and Sa were immunodominant
(Liu et al., 2018). In last several years, the WHO has also assessed anti-
genic characteristics with pre- and post-vaccination human sera. How-
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ever, those results sometimes showed discrepancies with results from
ferret antisera, and the results from people of different ages could also
experience some inconformity.

Except for the labor-intensive and time-consuming HI assay used to
determine the antigenicity of influenza viruses, many computational
methods have been developed to determine the antigenic relationships or
antigenic distances between influenza viruses and predict the evolution
of influenza. These methods combine techniques and concepts from
multivariate statistics, population genetics, epidemiological modelling
and phylogenetic theory (Klingen et al., 2018). With the speed and ability
in determining antigenicity-altering sites, they generate competitive
predictive accuracies in vaccine strain prediction. Most computational
works have focused on H3N2 virus strains (Adabor, 2021; Du et al., 2012;
Lee et al., 2020; Liao et al., 2008; Xia et al., 2021), since the H3N2
subtype has circulated extensively in the past years, and the immuno-
logical assay data were sufficient to generate more reliable predictive
models. Models to predict the antigenicity of H1N1 viruses were also
developed (Anderson et al., 2018; Li et al., 2020; Yin et al., 2018), and the
performance varied due to the different methods and datasets employed.
In recent years, some computational works have tended to develop uni-
versal models (Peng et al., 2017; Qiu et al., 2022) to predict the antige-
nicity of different subtypes of influenza virus with universal features, and
the performances of these models for H1 were typically not as strong as
H3.

Despite all these methods to predict antigenic variants for influenza,
the performance of these methods on H1N1pdm dataset has not been
reported, and the antigenic evolution of H1N1pdm viruses haven't been
systematically investigated. In this study, we modified our previously
developed model that mapped the antigenic patterns and evolution of
H1N1 viruses (Liu et al., 2015), and tested the performance of this
method on H1N1pdm viruses. The results showed good performance in
predicting antigenic relationships for H1N1pdm viruses, especially in
identifying antigenic variants. With the predicted antigenic relationships
between all available H1N1pdm viruses, we further inferred antigenic
clusters of H1N1pdm viruses until now. These results allowed us to
systematically investigate the antigenic evolution of H1N1pdm, and
prediction of antigenic variants may further support influenza surveil-
lance and vaccine recommendations for H1N1pdm.

2. Materials and methods

2.1. Influenza HA sequence acquisition and sequence analysis

Influenza HA sequence data (nucleotide and amino acid) were
downloaded from Global Initiative on Sharing All Influenza Data
(GISAID) (Shu and Mccauley, 2017) on August 17th, 2022. The se-
quences with missing or aberrant amino acids (i.e., “X”, “-”) in the HA1
domain were removed in the following antigenic modeling analysis. HA1
sequences were aligned with ClustalW (Larkin et al., 2007). Represen-
tative HA1 nucleotide sequences were chosen to generate a phylogenetic
tree using CD-HIT (Li and Godzik, 2006) with a 99% identity threshold.
The phylogenetic tree was built using FastTree (Price et al., 2009) based
on the maximum likelihood model with 1000 bootstrap replicates.
Time-scaled phylogenetic analysis was performed through a Markov
chainMonte Carlo (MCMC) framework in BEAST v2.7.3 (Bouckaert et al.,
2019). We chose the GTR substitution model, a coalescent Bayesian
skyline tree prior, and a strict molecular clock model. MCMC chains were
run for 10 million steps, and TreeAnnotator was used to analyze the
maximum clade credibility (MCC) tree with mean heights, following the
burn-in of the first 10% of trees. The tree was visualized using FigTree
v1.4.4 and Dendroscope (Huson et al., 2007).

2.2. Hemagglutination inhibition (HI) data collection

Antigenic relationships between H1N1 viruses pre-2009 (former
seasonal influenza H1N1) were inferred from HI assay data of former
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seasonal influenza A (H1N1) viruses collected from Harvey et al.'s work
(Harvey et al., 2016). This dataset comprises 19,905 individual mea-
surements of cross-reactivity between viruses. To obtain a more credible
training dataset, we collected only those virus pairs with more than one
measurement; if there were two measurements between one specific
virus pair, we collected the antigenic relationship only if the two results
were consistent (antigenically similar or distinct); and if there were more
than two measures between one virus pair, we chose the majority
consistent results to determine the antigenic relationship between the
two viruses. In total, we get a training dataset of 239 antigenically similar
pairs and 336 antigenically variant pairs of viruses (see Supplementary
Table S1 for detail).

HI data of H1N1 viruses post-2009 were collected from the Weekly
Epidemiological Record of the WHO. Virus pairs were considered anti-
genically variant if their HI titers differed by four dilutions or more. If
the HI titer of strain i relative to antisera raised against strain j and the
HI titer of strain j relative to antisera raised against strain i both exist,
then the antigenic relationship between viruses i and j was calculated by
the Archetti-Horsfall distance (dAH) (Archetti and Horsfall, 1950) as
follows:

dAH¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hii*Hjj

Hji*Hij

s
(1)

A pair of viruses was considered antigenically similar if dAH <4,
otherwise they were considered antigenically different. In total, we ob-
tained 267 pairs of antigenic relationships, including 145 antigenically
similar pairs and 122 antigenically variant pairs (see Supplementary
Table S2 for detailed information).

2.3. Antigenic relationship prediction model for H1N1pdm viruses

The antigenic relationships between viruses were predicted using a
machine-learning approach, based on our previously developed model
for former seasonal influenza H1N1(Liu et al., 2015). This model took
into account the structural and physicochemical features that underlie
antigen-antibody interactions, including five known H1N1 virus HA
epitopes, five physicochemical properties of amino acids (hydrophobic-
ity, volume, charge, polarity and accessible surface area), receptor
binding and glycosylation. Based on the training dataset, we calculated a
threshold cut-off for each feature, and then a Naïve Bayes classifier was
built based on these features to infer the antigenic relationship. To
improve the model performance for H1N1pdm viruses, we mainly made
the following two refinements. The first refinement was to collect a more
reliable training dataset, as we described in the HI data collection section.
The second refinement was to use different definitions of epitopes for the
former seasonal H1N1 virus and H1N1pdm virus. As epitopes were
important features in our model, the epitope definition was crucial. Xu
et al. (2010) determined the crystal structure of the HA from the H1N1
A/California/04/2009 virus, and revealed that the 2009 H1 HA shared
conserved antigenic epitopes with human and swine H1 viruses from the
early 20th century, while the seasonal human H1 HAs gradually diverged
from the swine lineage (Smith et al., 2009). We used the epitope defi-
nition in this work for H1N1pdm, and the definition in Caton et al.‘s work
(Caton et al., 1982) for the former seasonal H1N1, as shown in Fig. 1B,
the detailed epitope sites were listed in Supplementary Table S3. With
these refinements, we built a new model for H1N1pdm viruses.

To validate whether our method could perform well on the dataset
after 2009, we used the antigenic relationship dataset of former seasonal
H1N1 viruses we described above as a training dataset and tested it on
the HI dataset after 2009. The model performance was evaluated by the
following parameters:

Sensitivity¼ TP
TPþ FN

(2)



Fig. 1. Development of PREDAC-H1pdm. A Workflow of the PREDAC-H1pdm method. B Epitope definitions on HA1 protein for former seasonal H1N1 (left, 1RU7)
and H1N1pdm (right, 3LZG). C The Receiver Operating Characteristic (ROC) curve of initial and modified antigenic relationship prediction models.
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Specificity¼ TN
TN þ FP

(3)
Accuracy¼ TPþ TN
TPþ FPþ TN þ FN

(4)

where, TP, TN, FP and FN represent true positive samples, true negative
samples, false positive samples and false negative samples, respectively.

2.4. Development of PREDAC-H1pdm

PREDAC-H1pdm is an updated version of PREDAC-H1, which was
used to model antigenic clusters of H1N1 viruses. After predicting the
antigenic relationship between each pair of viruses in a group of
H1N1pdm viruses, an antigenic correlation network was constructed by
connecting pairs of viruses inferred to be antigenically similar. Then,
groups of viruses with similar antigenicity, denoted as antigenic clusters,
were identified from the network using the MCL program (Enright et al.,
2002). The workflow was shown in Fig. 1A.

3. Results

3.1. Predicting the antigenic relationship between H1N1pdm strains

Since we have developed a model to predict the antigenic relationship
between former seasonal influenza H1N1 viruses, we first tested the
performance of this model on the HI dataset of H1N1pdm virus. With
former seasonal H1N1 dataset as training dataset and H1N1pdm dataset
as test dataset, the prediction accuracy of this initial model was 71.5%,
and the sensitivity and specificity were 74.6% and 69.0%, respectively.
After the refinement as we described in the method section, the accuracy,
sensitivity and specificity of the retrospective test of our refined model
were 80.9%, 91.8%, and 71.7%, respectively. The Receiver Operating
Characteristic (ROC) curves of the initial model and our refined model
were shown in Fig. 1C, with area under curve (AUC) of 0.73 and 0.79,
respectively.

We noticed that the specificity of our model was somewhat low on
this testing dataset, and we further analyzed the false-positive pairs of
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viruses. Among these false-positive pairs, 15 out of 41 pairs were
A/California/7/2009 with strains after 2018, and they were antigeni-
cally similar in ferret HI tests, but some viruses have already showed poor
inhibition by some post-vaccination human serum pools since 2016. We
further listed the predicted antigenic relationships and mutations be-
tween vaccine strains in Supplementary Table S4. Pairs A/
California/7/2009-A/Brisbane/02/2018, A/California/7/2009-A/
Guangdong-Maonan/SWL1536/2019 and A/Brisbane/02/2018-A/
Guangdong-Maonan/SWL1536/2019 were predicted to be antigeni-
cally variant, while the ferret HI assays showed that they were antigen-
ically similar. In WHO reports, 6B.1A viruses with the HA1 amino acid
substitution of S183P caused HI titer reduction in some post-
vaccination human sera (World Health Organization, 2019a). The
A/California/7/2009-A/Brisbane/02/2018 and A/California
/7/2009-A/Guangdong-Maonan/SWL1536/2019 pairs all had S183P
substitutions, and the prediction results were rational considering that
they were antigenic variants. Additionally, for the A/Brisbane
/02/2018-A/Guangdong-Maonan/SWL1536/2019 pair, the ferret HI
results showed that they were antigenically similar, but in the WHO
report, human HI titers against viruses in the 5A clade with substitutions
D187A and Q189E, as in GD19, showed reductions compared to HI titers
against A/Brisbane/02/2018-like viruses (World Health Organization,
2020). All false-positive pairs of viruses with predicted scores were listed
in Supplementary Table S5, and the pairs with substitution S183P or
substitutions D187A and Q189E were highlighted. Our model showed
fairly good performance in predicting antigenic variants, with better
sensitivity than the ferret HI assays.
3.2. Mapping the antigenic clusters of H1N1pdm strains

After constructing the antigenic relationship prediction model for
H1N1pdm, we further developed PREDAC-H1pdm to model the anti-
genic evolution of H1N1pdm viruses (available at http://www.computa
tionalbiology.cn/H1N1pdm/html/index.php). Since 2009, the WHO has
recommended several vaccine strains: A/California/7/2009, A/Michi-
gan/45/2015, A/Brisbane/02/2018, A/Guangdong-Maonan/SWL1536/
2019, and A/Victoria/2570/2019. In the most recent 2023 southern
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hemisphere influenza season, A/Sydney/5/2021 (H1N1) pdm09-like
virus was recommended as the vaccine strain. With the PREDAC-
H1pdm method, we identified five antigenic clusters for H1N1pdm vi-
ruses after 2009: CA09, BR18, GD19, VI19 and Minor, named after the
vaccine strain abbreviations they contained. A/Michigan/45/2015 was
included in the CA09 cluster, which was reasonable since they were
antigenically similar. The Minor cluster contained a small number of
virus strains that mainly circulated in 2019 and 2020, and in the
phylogenetic tree, it mainly belonged to the 6B.1A.5b clade.

The antigenic correlation network is shown in Fig. 2A, and a time-
scaled tree was built to show the genetic relationships between those
clusters in Fig. 2B, and the genetic distance tree was shown in Supple-
mentary Figure S1. We then mapped the dynamic changes in the per-
centage of antigenic clusters in Fig. 2C, the percentage of one antigenic
cluster in a year was calculated by the percentage of viral isolates
belonging to this antigenic cluster this year. Cluster CA09 mainly circu-
lated from 2009 to 2016, while BR18 arose in 2017 and dominated from
2017 to 2019. After 2019, three clusters emerged and cocirculated: the
Minor cluster mainly circulated in 2019 and disappeared soon after,
while clusters GD19 and VI19 cocirculated from 2019 and re-emerged in
2020 and 2021. In 2022, the VI19 cluster arose and GD19 declined.
Those results were corroborated in the WHO reports. All H1N1pdm vi-
ruses were antigenically indistinguishable from A/California/7/2009
and A/Michigan/45/2015 since 2009, until 2017, when human serum
from vaccinated adults (A/Michigan/45/2015-like) showed reduced
Fig. 2. Antigenic and genetic evolution of human influenza A (H1N1) pdm09 viruse
antigenic clusters on time-scaled tree of the HA1 region of the H1N1 HA nucleotide
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protection to viruses circulated in 2017 (World Health Organization,
2017). According to WHO report in 2019, most circulating viruses were
antigenically similar to A/Brisbane/02/2018, except for a small number
of viruses with HA1 amino acid substitutions at residues 155 or 156
(World Health Organization, 2019b), which was consistent with the
emergence of GD19 cluster in Fig. 2C. Also, in our results, the GD19 and
VI19 clusters have co-circulated since 2020, which was reported in WHO
report in 2021 (World Health Organization, 2021).

We further analyzed the circulation of antigenic clusters in different
districts, as illustrated in Fig. 3. After the long-term circulation of the
CA09 cluster, the BR18 cluster emerged in most continents in late 2016
or early 2017. However, in South America, the first emergence of BR18
was in June 2017. Since 2019, three clusters (GD19, VI19 and Minor)
have co-circulated, gradually replacing the BR18 cluster. The circulation
of H1N1pdm antigenic clusters was inconsistent in those continents,
especially in the last four years. The Minor cluster dominated in North
America from the end of 2018 to the end of 2019, and in South America
from the end of 2018 to the beginning of 2020, and it didn't reach
dominance at any time in other regions. In Asia, the GD19 cluster
circulated since early 2019, dominated since August 2019 and was
replaced by the VI19 cluster in the middle of 2021. In Europe, GD19 was
the main circulating cluster during the 2019–2020 season, and the VI19
cluster emerged in June 2021. However, the VI19 cluster did not become
dominant until July 2022. In Africa, the GD19 cluster dominated from
the 2019–2020 season to late 2021, and VI19 became the main
s. A Inferred antigenic correlation network of H1N1pdm viruses. B Mapping of
sequences. C Distribution of antigenic clusters by year.



Fig. 3. Antigenic evolution in different regions. Dynamic changes in the percentage of antigenic clusters from Jan. 2016 to July. 2022 were recorded monthly.
Different antigenic clusters were colored as in Fig. 2. The number of sampled sequences was shown in gray bars.
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circulating cluster in 2022. Meanwhile, the epidemic patterns in North
America, Oceania and South America seemed more complex. From mid-
2019 to mid-2020, three clusters (GD19, VI19 and Minor) co-circulated
for almost one year, and few strains were detected from mid-2020 to
mid-2021 based on sequence data. Since March 2020, the VI19 cluster
has dominated in North America and Oceania. In South America, few
strains were sequenced since May 2020, and the small number of strains
present from September 2021 to July 2022 belonged to the GD19 cluster.
These results reveal a more complex antigenic evolutionary route of
influenza H1N1pdm in recent years, with the cocirculation of different
antigenic clusters in some regions.

3.3. Indentifying cluster-specific amino acid substitutions in H1N1pdm
viruses

Aswe determined the antigenic clusters for H1N1pdm viruses, wewere
able to find the cluster-specific amino acid substitutions which may serve
as the determinants of antigenic variants. Here, we define the cluster-
specific amino acid substitutions as follows: if more than 70 percent of
amino acids in position n were X in one cluster, and Y in another cluster,
then the cluster-specific amino acid substitution was XnY. We calculated
the cluster-specific amino acid substitutions between CA09-BR18, BR18-
Table 1
The antigenic-specific substitutions of H1N1pdm antigenic clusters.

Sa Sb Ca1/Ca2

CA09-BR18 (99.6%)S164T(88.8%)

BR18-GD19 (99.3%)D187A(79.4%)

(99.9%)Q189E(82.8%)

BR18-VI19 (99.3%)N156K(99.1%)

(94.0%)L161I(91.8%)

BR18-
Minor

(99.3%)K160M(99.6%) (95.3%)E235D (9

a The sites in the receptor-binding domain were in bold.
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GD19, BR18-VI19, and BR18-Minor, as shown in Table 1, and the sub-
stitutions for former seasonal H1N1 are also shown in Supplementary
Table S6, and the ratio of strains with the specific amino acids were also
marked. We found that most substitutions were on epitope Sa, or within or
around the receptor-binding domain (RBD). CA09-BR18 had four specific
substitutions, located on epitopes Sa and Cb and one on RBD. The two
major clusters, GD19 and VI19, which circulated predominantly in the last
three years, had different mutation routes. GD19 mainly mutated on
epitope Sb, while VI19 mainly mutated on epitope Sa. Additionally, both
clusters had an N129D substitution located on the 130-loop of the RBD.
Interestingly, the 160 position was quite conserved in former seasonal
H1N1 viruses, and the K160 M substitution between BR18 and Minor only
existed in the Minor cluster after 2009. This site was located in the Sa
epitope and was conserved in other H1N1 strains. The Minor cluster also
contained substitutions on the 130-loop and 220-loop of the receptor-
binding area, which may influence receptor binding properties. Although
the Minor cluster did not circulate all over the world and existed for only a
short time, these specific mutations are worthy of constant concern.
Additionally, we observed a small clade on the phylogenetic tree that
seemed to have evolved from early VI19 viruses, which mainly consist of
viruses in 2021 and 2022. We compared the amino acids between VI19
and this small clade and found several specific substitutions, which contain
Cb RBD other

(99.3%)S74R (97.0%） (96.8%)S183Pa
(70.1%) (98.7%)I295V(99.8%)

(70.6%)N129D(99.3%)

(70.6%)N129D(97.5%)

(99.8%)K130N(96.9%)

(98.3%)V250A(92.2%)

9.9%) (99.8%)K130N(92.8%)

(99.5%)T216K (99.7%)

(99.9%)H296N(89.3%)
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A186T and Q189E on epitope Sb, and the Q189E substitution was also a
specific substitution between BR18 and GD19. In the latest WHO report
(World Health Organization, 2022), A/Sydney/5/2021 from this clade
was included in the recommended composition of vaccines for use in the
2023 southern hemisphere influenza season.

We also compared the specific substitutions of H1N1pdm viruses with
former H1N1 seasonal viruses. Most substitutions of former seasonal H1N1
were located on the Sb epitope and RBD, while most of the specific sub-
stitutions forH1N1pdmwereon theSaepitopeandRBD,whichmaysuggest
different variant preferences. Interestingly, the S183P substitution was not
only themaincauseof antigenicvariant forCA09-BR18but alsoappeared in
the BE95-NE99 cluster transition. These results showed different prefer-
ences in antigenic evolution of former seasonal H1N1 and H1N1pdm,
meanwhile, the same substitution might reappear, thus the substitutions
from the former seasonal H1N1 also deserve special attention.

3.4. Prediction of antigenic variants helps to estimate vaccine effectiveness

As our model had a good performance in predicting antigenic variants,
we calculated the percentage of variant strains in each continent by
influenza season, as shown in Fig. 4. Each node represents the percentage
of variant strains in one season, compared with the vaccine strain rec-
ommended in the last influenza season (the vaccine strains recommended
each season are listed in Supplementary Table S7). Taking North America
as an example, the variant strain percentage experienced a rapid increase
from the 2018-north season to the 2019-north season, which was
consistent with the gradually reduced vaccine efficacy data in the
2018–2019 season and 2019–2020 season in the United States, where the
vaccine effectiveness dropped from 62% in 2017–2018 season (Rolfes
et al., 2019) to 44% in 2018–2019 season (Chung et al., 2020) and 30% in
2019–2020 season (Tenforde et al., 2021) against H1N1pdm. Similar
situations occurred in other districts, due to the emergence of the BR18
cluster and the subsequent GD19 and VI19 clusters, and the mismatch
between circulating strains and vaccine strains. We also observed different
variant patterns in different districts since 2021. From 2021 to 2022, the
mismatch of vaccine strains with circulation strains was observed in
Europe, North America and South America but not in other districts. With
the rapid evaluation of antigenicity by our model, the percentage of
variant strains could be used as an initial estimate of vaccine effectiveness,
which may further assist vaccine recommendations.

4. Discussion

The influenza A/(H1N1) pdm09 viruses have circulated seasonally
since 2009, and continued to cause epidemics. As the continuous genetic
Fig. 4. Percentage of antigenic variant strains. The percentage of antigenic variant s
calculated as the percentage of antigenic variant strains in a given season, compared
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evolution of this virus, high-throughput measurements for antigenic
variants are crucial for influenza surveillance. In this study, we developed
PREDAC-H1pdm to model the antigenic evolution of human influenza
H1N1pdm viruses. Our antigenic prediction model demonstrated strong
performance in retrospective tests and exhibited greater sensitivity in
predicting antigenic variant strains compared to ferret HI assays. Since
our antigenic prediction model only relies on the sequences of viruses
and is faster and easier than the cost-worthy human serological analyses,
it could further assist in vaccine recommendations for H1N1pdm viruses.
Also, since our model was trained on a dataset of the former seasonal
influenza H1N1, this provided a possible way to predict the antigenic
relationship of newly emergent strains like H1N1pdm, when insufficient
HI data is available. In recent years, deep learning models have been
developed to predict antigenic relationships between influenza viruses
and had very good performance. We tested the performance of a deep
learning method IAV-CNN (Yin et al., 2019) on the H1N1pdm dataset,
the accuracy of 5-fold cross-validation testing was 64.8%; while our
feature-based model performed an accuracy of 81.3%. With sufficient HI
data, we could build a deep learning model for H1N1pdm to achieve
better performance in the future.

With this method, we also generated antigenic clusters for H1N1pdm.
Compared with the former seasonal influenza A (H1N1) viruses, anti-
genic variant determined sites of the H1N1pdm viruses were somewhat
different. Except for the sites located in RBD regions, substitutions on the
Sb epitope were usually important for former seasonal H1N1, while the
antigenic evolution of H1N1pdm tended to exhibit more substitutions on
the Sa epitope, which suggest potential difference in immuno-dominance
between the two virus types. Since H1N1pdm has not experienced long-
term evolution, this observationmay have some biases. The preference of
substitutions on the Sa epitope of H1N1pdm may be influenced by
human population immunity, or the inherent characteristics of
H1N1pdm, which need further investigation with more experimental
evidence in the future.

For the antigenic relationship prediction model, we used HI assay data
to generate training and testing datasets, as most computational methods
that predict antigenic relationships or distances between influenza viruses
did. However, we noticed in the WHO reports that some antigenically
similar strains in ferret HI assay showed poorly protection in human post-
vaccination serum. This inconsistency might result from differences in
immunodominance patterns between human and ferret serum (Liu et al.,
2018), or might be influenced by previous influenza infections and vac-
cinations in human (Hensley, 2014; Li et al., 2013). With the growing
number of HI assays by human post-vaccination sera, these results could
be collected to refine our datasets to generate prediction models with
more sensitivity in predicting antigenic variant strains.
trains in each continent was mapped by influenza seasons. The percentage was
to the last season's recommended vaccine strain.
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As demonstrated in our previous work (Liu et al., 2015), the
co-circulation of different antigenic clusters was quite normal in former
seasonal H1N1 evolution, and this phenomenon is even more remarkable
in H1N1pdm. The co-circulation of GD19, VI19, and Minor clusters was
observed in late 2019 and early 2020 in North America, Oceania and
South America. A localized epidemic pattern was also observed in the last
two years, as the main circulating cluster in a given season varied across
different continents. Since WHO recommends only one vaccine strain for
the H1N1 subtype each season, a mismatch between the vaccine strain
and the actual circulating strains exists in some regions. This suggests the
necessity of region-specific vaccine recommendations for H1N1pdm.
This local-persistent pattern could be a consequence of the SARS-CoV-2
pandemic, which brought reduction in international travel and caused
less frequent transmission between different districts. As the SARS-CoV-2
pandemic continues, new transmission patterns of influenza worth con-
stant concern.

Overall, we developed a computational method that effectively pre-
dicts antigenic variants for H1N1pdm viruses, which may further assist
vaccine recommendations. Additionally, mapping the antigenic evolu-
tion of H1N1pdm viruses deepens our understanding of the evolution and
epidemic pattern of this new virus, contributing to better surveillance
and vaccination strategies. Although H1N1pdm virus has circulated for
over 13 years and experienced certain antigenic drift, its history is still
short compared to that of former seasonal influenza H1N1 and seasonal
influenza H3N2. Consequently, the antigenic characteristics and
epidemic patterns of H1N1pdm viruses need sustained attention.
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